EconPapers    
Economics at your fingertips  
 

Smoothing dissimilarities to cluster binary data

David B. Hitchcock and Zhimin Chen

Computational Statistics & Data Analysis, 2008, vol. 52, issue 10, 4699-4711

Abstract: Cluster analysis attempts to group data objects into homogeneous clusters on the basis of the pairwise dissimilarities among the objects. When the data contain noise, we might consider performing a smoothing operation, either on the data themselves or on the dissimilarities, before implementing the clustering algorithm. Possible benefits to such pre-smoothing are discussed in the context of binary data. We suggest a method for cluster analysis of binary data based on "smoothed" dissimilarities. The smoothing method presented borrows ideas from shrinkage estimation of cell probabilities. Some simulation results are given showing that improvement in the accuracy of the clustering result is obtained via smoothing, especially in the case in which the observed data contain substantial noise. The method is illustrated with an example involving binary test item response data.

Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00169-2
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:10:p:4699-4711

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:52:y:2008:i:10:p:4699-4711