Standardising the lift of an association rule
P.D. McNicholas,
T.B. Murphy and
M. O'Regan
Computational Statistics & Data Analysis, 2008, vol. 52, issue 10, 4712-4721
Abstract:
The lift of an association rule is frequently used, both in itself and as a component in formulae, to gauge the interestingness of a rule. The range of values that lift may take is used to standardise lift so that it is more effective as a measure of interestingness. This standardisation is extended to account for minimum support and confidence thresholds. A method of visualising standardised lift, through the relationship between lift and its upper and lower bounds, is proposed. The application of standardised lift as a measure of interestingness is demonstrated on college application data and social questionnaire data. In the latter case, negations are introduced into the mining paradigm and an argument for this inclusion is put forward. This argument includes a quantification of the number of extra rules that arise when negations are considered.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00170-9
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:10:p:4712-4721
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().