On Bayesian estimation and model comparison of an integrated structural equation model
Sik-Yum Lee and
Xin-Yuan Song
Computational Statistics & Data Analysis, 2008, vol. 52, issue 10, 4814-4827
Abstract:
In this paper, we introduce a Bayesian approach to the estimation and model comparison of an integrated two-level nonlinear structural equation model with mixed continuous, dichotomous, and ordered categorical data that may be missing at random. This general model can accommodate nonlinearities of latent variables and the effects of fixed covariates on measurement and structural equations in within-groups and between-groups models. A sampling-based algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is proposed for posterior simulation. A procedure that utilizes path sampling is implemented to compute the Bayes factor for model comparison under the framework of the proposed integrated model. Empirical performances of Bayesian methodologies are illustrated via analysis of a real example.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00199-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:10:p:4814-4827
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().