A fast haplotype inference method for large population genotype data
Ji-Hong Zhang,
Ling-Yun Wu,
Jian Chen and
Xiang-Sun Zhang
Computational Statistics & Data Analysis, 2008, vol. 52, issue 11, 4891-4902
Abstract:
With the rapid progress of genotyping techniques, many large-scale, genome-wide disease studies are now under way. One of the challenges of large disease-association studies is developing a fast and accurate computing method for haplotype inference from genotype data. In this paper, a new computing method for population-based haplotype inference problem is proposed. The designed method does not assume haplotype blocks in the population and allows each individual haplotype to have its own structure, and thus is able to accommodate recombination and obtain higher adaptivity to the genotype data, specifically in the case of long marker maps. This method develops a dynamic programming algorithm, which is theoretically guaranteed to find exact maximum likelihood solutions of the variable order Markov chain model for haplotype inference problem within linear running time. Hence, it is fast and, as a result, practicable for large genotype datasets. Through extensive computational experiments on large-scale real genotype data, the proposed method is shown to be fast and efficient.
Date: 2008
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00209-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:11:p:4891-4902
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().