Comparison of the Andersen-Gill model with poisson and negative binomial regression on recurrent event data
Antje Jahn-Eimermacher
Computational Statistics & Data Analysis, 2008, vol. 52, issue 11, 4989-4997
Abstract:
Many generalizations of the Cox proportional hazard method have been elaborated to analyse recurrent event data. The Andersen-Gill model was proposed to handle event data following Poisson processes. This method is compared with non-survival approaches, such as Poisson and negative binomial regression. The comparison is performed on data simulated according to various event-generating processes and differing in subject heterogeneity. When robust standard error estimates are applied, for Poisson processes the Andersen-Gill approach is comparable to a negative binomial regression, whereas the poisson regression has comparable coverage probabilities of confidence intervals, but increased type I error rates; however, none of the methods can generate unbiased parameter estimates with data violating the independent increment assumption. These findings are illustrated by data from a clinical trial of the efficacy of a new pneumococcal vaccine for prevention of otitis media.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00215-6
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:11:p:4989-4997
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().