Linear mixed models with skew-elliptical distributions: A Bayesian approach
Alejandro Jara,
Fernando Quintana and
San Martin, Ernesto
Computational Statistics & Data Analysis, 2008, vol. 52, issue 11, 5033-5045
Abstract:
Normality of random effects and error terms is a routine assumption for linear mixed models. However, such an assumption may be unrealistic, obscuring important features of within- and among-unit variation. A simple and robust Bayesian parametric approach that relaxes this assumption by using a multivariate skew-elliptical distribution, which includes the Skew-t, Skew-normal, t-Student, and Normal distributions as special cases and provides flexibility in capturing a broad range of non-normal and asymmetric behavior is presented. An appropriate posterior simulation scheme is developed and the methods are illustrated with an application to a longitudinal data example.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00245-4
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:11:p:5033-5045
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().