EconPapers    
Economics at your fingertips  
 

Accuracy of Laplace approximation for discrete response mixed models

Harry Joe

Computational Statistics & Data Analysis, 2008, vol. 52, issue 12, 5066-5074

Abstract: The Laplace approximation is amongst the computational methods used for estimation in generalized linear mixed models. It is computationally the fastest, but there hasn't been a clear analysis of when its accuracy is adequate. In this paper, for a few factors we do calculations for a variety of mixed models to show patterns in the asymptotic bias of the estimator based on the maximum of the Laplace approximation of the log-likelihood. The biggest factor for asymptotic bias is the amount of discreteness in the response variable; there is more bias for binary and ordinal responses than for a count response, and more bias for a count response when its support is mainly near 0. When there is bias, the bias decreases as the cluster size increases. Often, the Laplace approximation is adequate even for small cluster sizes. Even with bias, the Laplace approximation may be adequate for quick assessment of competing mixed models with different random effects and covariates.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00253-3
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:12:p:5066-5074

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5066-5074