EconPapers    
Economics at your fingertips  
 

Regularized simultaneous model selection in multiple quantiles regression

Hui Zou and Ming Yuan

Computational Statistics & Data Analysis, 2008, vol. 52, issue 12, 5296-5304

Abstract: Simultaneously estimating multiple conditional quantiles is often regarded as a more appropriate regression tool than the usual conditional mean regression for exploring the stochastic relationship between the response and covariates. When multiple quantile regressions are considered, it is of great importance to share strength among them. In this paper, we propose a novel regularization method that explores the similarity among multiple quantile regressions by selecting a common subset of covariates to model multiple conditional quantiles simultaneously. The penalty we employ is a matrix norm that encourages sparsity in a column-wise fashion. We demonstrate the effectiveness of the proposed method using both simulations and an application of gene expression data analysis.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00273-9
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:12:p:5296-5304

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5296-5304