Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models
Drew Creal
Computational Statistics & Data Analysis, 2008, vol. 52, issue 6, 2863-2876
Abstract:
Filtering and smoothing algorithms that estimate the integrated variance in Lévy-driven stochastic volatility models are analyzed. Particle filters are algorithms designed for nonlinear, non-Gaussian models while the Kalman filter remains the best linear predictor if the model is linear but non-Gaussian. Monte Carlo experiments are performed to compare these algorithms across different specifications of the model including different marginal distributions and degrees of persistence for the instantaneous variance. The use of realized variance as an observed variable in the state space model is also evaluated. Finally, the particle filter's ability to identify the timing and size of jumps is assessed relative to popular nonparametric estimators.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00271-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:6:p:2863-2876
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().