Multivariate reduced rank regression in non-Gaussian contexts, using copulas
Andréas Heinen and
Erick Rengifo
Computational Statistics & Data Analysis, 2008, vol. 52, issue 6, 2931-2944
Abstract:
A new procedure is proposed that performs reduced rank regression (RRR) in non-Gaussian contexts based on multivariate dispersion models. Reduced-rank multivariate dispersion models (RR-MDM) generalize RRR to a very large class of distributions, which include continuous distributions like the normal, Gamma, inverse Gaussian, and discrete distributions like the Poisson, the binomial and the negative binomial. A multivariate distribution is created with the help of the Gaussian copula and estimation is performed using maximum likelihood. It is shown how this method can be amended to deal with the case of discrete data. A Monte Carlo simulation shows that the new estimator is more efficient than the traditional Gaussian RRR. In the framework of MDM's a procedure analogous to canonical correlations is introduced, which takes into account the distribution of the data. Finally, the method is applied to the number of trades of five US department stores on the New York Stock Exchange during the year 1999 and determine the existence of a common factor which represents sector specific news. This analysis is helpful in microstructure analysis to identify leaders from the point of view of dissemination of sectorial information.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00305-2
Full text for ScienceDirect subscribers only.
Related works:
Working Paper: Multivariate reduced rank regression in non-Gaussian contexts, using copulas (2004) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:6:p:2931-2944
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().