Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise
Maria Elvira Mancino and
S. Sanfelici
Computational Statistics & Data Analysis, 2008, vol. 52, issue 6, 2966-2989
Abstract:
The finite sample properties of the Fourier estimator of integrated volatility under market microstructure noise are studied. Analytic expressions for the bias and the mean squared error (MSE) of the contaminated estimator are derived. These formulae can be practically used to design optimal MSE-based estimators, which are very robust and efficient in the presence of noise. Moreover an empirical analysis based on a simulation study and on high-frequency logarithmic prices of the Italian stock index futures (FIB30) validates the theoretical results.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00288-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:6:p:2966-2989
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().