Estimation of the conditional risk in classification: The swapping method
Jean-Jacques Daudin and
Tristan Mary-Huard
Computational Statistics & Data Analysis, 2008, vol. 52, issue 6, 3220-3232
Abstract:
The bias of the empirical error rate in supervised classification is studied. It is shown that this bias can be understood as a covariance between the classification rule and the labeling of the training data. From this result, a new penalized criterion is proposed to perform model selection in classification. Applications of the resulting algorithm to simulated and real data are presented.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00389-1
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:6:p:3220-3232
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().