EconPapers    
Economics at your fingertips  
 

Multiscale spectral analysis for detecting short and long range change points in time series

Lena Ringstad Olsen, Probal Chaudhuri and Fred Godtliebsen

Computational Statistics & Data Analysis, 2008, vol. 52, issue 7, 3310-3330

Abstract: Identifying short and long range change points in an observed time series that consists of stationary segments is a common problem. These change points mark the time boundaries of the segments where the time series leaves one stationary state and enters another. Due to certain technical advantages, analysis is carried out in the frequency domain to identify such change points in the time domain. What is considered as a change may depend on the time scale. The results of the analysis are displayed in the form of graphs that display change points on different time horizons (time scales), which are observed to be statistically significant. The methodology is illustrated using several simulated and real time series data. The method works well to detect change points and illustrates the importance of analysing the time series on different time horizons.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00438-0
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:7:p:3310-3330

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3310-3330