Copula model evaluation based on parametric bootstrap
Aristidis K. Nikoloulopoulos and
Dimitris Karlis
Computational Statistics & Data Analysis, 2008, vol. 52, issue 7, 3342-3353
Abstract:
Copulas are used to model multivariate data as they account for the dependence structure and provide a flexible representation of the multivariate distribution. A great number of copulas has been proposed with various dependence aspects. One important issue is the choice of an appropriate copula from a large set of candidate families to model the data at hand. A large number of copulas are compared via likelihood principle, showing that it is hard to recognize the true underlying copula from real data since copulas with similar dependence properties are very close together. A goodness of fit test based on Mahalanobis squared distance between original and simulated log-likelihoods through parametric bootstrap techniques is also proposed. The advantage of this approach is that it is applicable to all families of copulas.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00442-2
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:7:p:3342-3353
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().