Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution
Arnost Komárek and
Emmanuel Lesaffre
Computational Statistics & Data Analysis, 2008, vol. 52, issue 7, 3441-3458
Abstract:
Generalized linear mixed models are popular for regressing a discrete response when there is clustering, e.g. in longitudinal studies or in hierarchical data structures. It is standard to assume that the random effects have a normal distribution. Recently, it has been examined whether wrongly assuming a normal distribution for the random effects is important for the estimation of the fixed effects parameters. While it has been shown that misspecifying the distribution of the random effects has a minor effect in the context of linear mixed models, the conclusion for generalized mixed models is less clear. Some studies report a minor impact, while others report that the assumption of normality really matters especially when the variance of the random effect is relatively high. Since it is unclear whether the normality assumption is truly satisfied in practice, it is important that generalized mixed models are available which relax the normality assumption. A replacement of the normal distribution with a mixture of Gaussian distributions specified on a grid whereby only the weights of the mixture components are estimated using a penalized approach ensuring a smooth distribution for the random effects is proposed. The parameters of the model are estimated in a Bayesian context using MCMC techniques. The usefulness of the approach is illustrated on two longitudinal studies using R-functions.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00429-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:7:p:3441-3458
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().