Likelihood analysis of the multivariate ordinal probit regression model for repeated ordinal responses
Yonghai Li and
Daniel W. Schafer
Computational Statistics & Data Analysis, 2008, vol. 52, issue 7, 3474-3492
Abstract:
We consider the analysis of longitudinal ordinal data, meaning regression-like analysis when the response variable is categorical with ordered categories, and is measured repeatedly over time (or space) on the experimental or sampling units. Particular attention is given to the multivariate ordinal probit regression model, in which the correlation between ordered categorical responses on the same unit at different times (or locations) is modeled with a latent variable that has a multivariate normal distribution. An algorithm for maximum likelihood analysis of this model is proposed and the analysis is demonstrated on an example. Simulations clarify the extent to which maximum likelihood estimators can be more efficient than generalized estimating equations (GEE) estimators of regression coefficients and the extent to which likelihood ratio tests can be more accurate than tests based on standard errors and approximate normality of GEE estimators.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00435-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:7:p:3474-3492
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().