Hierarchical-likelihood approach for nonlinear mixed-effects models
Maengseok Noh and
Youngjo Lee
Computational Statistics & Data Analysis, 2008, vol. 52, issue 7, 3517-3527
Abstract:
The restricted maximum likelihood (REML) procedure is useful for inferences about variance components in linear mixed models (LMMs). However, its extension to nonlinear mixed models (NLMMs) is often hampered by analytically intractable integrals. For NLMMs various estimation methods have been suggested, but they have suffered from unsatisfactory biases. In this paper we propose a statistically and computationally efficient REML procedure, based upon hierarchical likelihood. Numerical studies show that the proposed method reduces the biases in the existing methods that we studied. We also study how the current REML procedure for LMMs can be modified to compute the proposed estimators.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00439-2
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:7:p:3517-3527
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().