Testing the equality of proportions for correlated otolaryngologic data
Nian-Sheng Tang,
Man-Lai Tang and
Shi-Fang Qiu
Computational Statistics & Data Analysis, 2008, vol. 52, issue 7, 3719-3729
Abstract:
In otolaryngologic (or ophthalmologic) studies, each subject usually contributes information for each of two ears (or eyes), and the values from the two ears (or eyes) are generally highly correlated. Statistical procedures that fail to take into account the correlation between responses from two ears could lead to incorrect results. On the other hand, asymptotic procedures that overlook small sample designs, sparse data structures, or the discrete nature of data could yield unacceptably high type I error rates even when the intraclass correlation is taken into consideration. In this article, we investigate eight procedures for testing the equality of proportions in such correlated data. These test procedures will be implemented via the asymptotic and approximate unconditional methods. Our empirical results show that tests based on the approximate unconditional method usually produce empirical type I error rates closer to the pre-chosen nominal level than their asymptotic tests. Amongst these, the approximate unconditional score test performs satisfactorily in general situations and is hence recommended. A data set from an otolaryngologic study is used to illustrate our proposed methods.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00483-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:7:p:3719-3729
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().