Linear B-spline copulas with applications to nonparametric estimation of copulas
Xiaojing Shen,
Yunmin Zhu and
Lixin Song
Computational Statistics & Data Analysis, 2008, vol. 52, issue 7, 3806-3819
Abstract:
In this paper, we propose a method for constructing a new class of copulas. They are called linear B-spline copulas which are a good approximation of a given complicated copula by using finite numbers of values of this copula without the loss of some essential properties. Moreover, rigorous analysis shows that the empirical linear B-spline copulas are more effective than empirical copulas to estimate perfectly dependent copulas. For the cases of nonperfectly dependent copulas, simulations show that the empirical linear B-spline copulas also improve the empirical copulas to estimate the underlying copula structure. Furthermore, we compare the performance of parametric estimation of copulas based on the empirical copulas with that based on the empirical linear B-spline copulas by simulations. In most of the cases, the latter are better than the former.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00006-6
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:7:p:3806-3819
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().