Pair-perturbation influence functions of nongaussianity by projection pursuit
Yufen Huang,
Ching-Ren Cheng and
Tai-Ho Wang
Computational Statistics & Data Analysis, 2008, vol. 52, issue 8, 3971-3987
Abstract:
The most nongaussian direction to explore the clustering structure of the data is considered to be the interesting linear projection direction by applying projection pursuit. Nongaussianity is often measured by kurtosis, however, kurtosis is well known to be sensitive to influential points/outliers and the projection direction is essentially affected by unusual points. Hence in this paper we focus on developing the influence functions of projection directions to investigate the influence of abnormal observations especially on the pair-perturbation influence functions to uncover the masked unusual observations. A technique is proposed for defining and calculating influence functions for statistical functional of the multivariate distribution. A simulation study and a real data example are provided to illustrate the applications of these approaches.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00010-8
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:8:p:3971-3987
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().