Point and interval estimation for extreme-value regression model under Type-II censoring
P.S. Chan,
H.K.T. Ng,
N. Balakrishnan and
Q. Zhou
Computational Statistics & Data Analysis, 2008, vol. 52, issue 8, 4040-4058
Abstract:
Inference for the extreme-value regression model under Type-II censoring is discussed. The likelihood function and the score functions of the unknown parameters are presented. The asymptotic variance-covariance matrix is derived through the inverse of the expected Fisher information matrix. Since the maximum likelihood estimators (MLE) cannot be solved analytically, an approximation to these MLE are proposed. The variance-covariance matrix of these approximate estimators is also derived. Next, confidence intervals are proposed based on the MLE and the approximate estimators. An extensive simulation study is carried out in order to study the bias and variance of all these estimators. We also examine the coverage probabilities as well as the expected widths of the confidence intervals. Finally, all the inferential procedures discussed here are illustrated with practical data.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00023-6
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:8:p:4040-4058
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().