EconPapers    
Economics at your fingertips  
 

Sequence alignment for masquerade detection

Scott E. Coull and Boleslaw K. Szymanski

Computational Statistics & Data Analysis, 2008, vol. 52, issue 8, 4116-4131

Abstract: The masquerade attack, where an attacker takes on the identity of a legitimate user to maliciously utilize that user's privileges, poses a serious threat to the security of information systems. Such attacks completely undermine traditional security mechanisms due to the trust imparted to user accounts once they have been authenticated. Many attempts have been made at detecting these attacks, yet achieving high levels of accuracy remains an open challenge. In this paper, we discuss the use of a specially tuned sequence alignment algorithm, typically used in bioinformatics, to detect instances of masquerading in sequences of computer audit data. By using the alignment algorithm to align sequences of monitored audit data with sequences known to have been produced by the user, the alignment algorithm can discover areas of similarity and derive a metric that indicates the presence or absence of masquerade attacks. Additionally, we present several scoring systems, methods for accommodating variations in user behavior, and heuristics for decreasing the computational requirements of the algorithm. Our technique is evaluated against the standard masquerade detection dataset provided by Schonlau et al. [Schonlau, M., DuMouchel, W., Ju, W.H., Karr, A.F., Theus, M., Vardi, Y., 2001. Computer intrusion: Detecting masquerades. Statistical Science 16 (1), 58-74], and the results show that the use of the sequence alignment technique provides, to our knowledge, the best results of all masquerade detection techniques to date.

Date: 2008
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00017-0
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:8:p:4116-4131

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:52:y:2008:i:8:p:4116-4131