Feature significance for multivariate kernel density estimation
Tarn Duong,
Arianna Cowling,
Inge Koch and
M.P. Wand
Computational Statistics & Data Analysis, 2008, vol. 52, issue 9, 4225-4242
Abstract:
Multivariate kernel density estimation provides information about structure in data. Feature significance is a technique for deciding whether features-such as local extrema-are statistically significant. This paper proposes a framework for feature significance in d-dimensional data which combines kernel density derivative estimators and hypothesis tests for modal regions. For the gradient and curvature estimators distributional properties are given, and pointwise test statistics are derived. The hypothesis tests extend the two-dimensional feature significance ideas of Godtliebsen et al. [Godtliebsen, F., Marron, J.S., Chaudhuri, P., 2002. Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics 11, 1-21]. The theoretical framework is complemented by novel visualization for three-dimensional data. Applications to real data sets show that tests based on the kernel curvature estimators perform well in identifying modal regions. These results can be enhanced by corresponding tests with kernel gradient estimators.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00150-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:9:p:4225-4242
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().