A bivariate frailty model for events with a permanent survivor fraction and non-monotonic hazards; with an application to age at first maternity
Peter Congdon
Computational Statistics & Data Analysis, 2008, vol. 52, issue 9, 4346-4356
Abstract:
For certain life cycle events a non-susceptible fraction of subjects will never undergo the event. In demographic applications, examples are provided by marriage and age at first maternity. A model for survival data allowing a permanent survival fraction, non-monotonic failure rates and unobserved frailty is considered here. Regressions are used to explain both the failure time and permanent survival mechanisms and additive correlated errors are included in the general linear models defining these regressions. AÂ hierarchical Bayesian approach is adopted with likelihood conditional on the random frailty effects and a second stage prior defining the bivariate density of those effects. The gain in model fit, and potential effects on inference, from adding frailty is demonstrated in a case study application to age at first maternity in Germany.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00070-4
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:9:p:4346-4356
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().