Discovering patterns in categorical time series using IFS
Christian H. Weiß and
Rainer Göb
Computational Statistics & Data Analysis, 2008, vol. 52, issue 9, 4369-4379
Abstract:
The detection of patterns in categorical time series data is an important task in many fields of science. Several efficient algorithms for finding frequent sequential patterns have been proposed. An online-approach for sequential pattern analysis based on transforming the categorical alphabet to real vectors and generating fractals by an iterated function systems (IFS) is suggested. Sequential patterns can be analyzed with standard methods of cluster analysis using this approach. A version of the procedure allows detecting patterns visually.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00087-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:9:p:4369-4379
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().