A new genetic algorithm in proteomics: Feature selection for SELDI-TOF data
Christelle Reynès,
Robert Sabatier,
Nicolas Molinari and
Sylvain Lehmann
Computational Statistics & Data Analysis, 2008, vol. 52, issue 9, 4380-4394
Abstract:
Mass spectrometry from clinical specimens is used in order to identify biomarkers in a diagnosis. Thus, a reliable method for both feature selection and classification is required. A novel method is proposed to find biomarkers in SELDI-TOF in order to perform robust classification.The feature selection is based on a new genetic algorithm. Concerning the classification, a method which takes into account the great variability on intensity by using decision stumps has been developed. Moreover, as the samples are often small, it is more appropriate to use the decision stumps simultaneously than building a complete tree. The thresholds of the decision stumps are determined in the same genetic algorithm. Finally, the method was generalized to more than two groups based on pairwise coupling. The obtained algorithm was applied on two data sets: a publicly available one containing two groups allowing a comparison with other methods from the literature and a new one containing three groups.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00088-1
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:9:p:4380-4394
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().