A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models
A. Alonso,
S. Litière and
G. Molenberghs
Computational Statistics & Data Analysis, 2008, vol. 52, issue 9, 4474-4486
Abstract:
Estimation in generalized linear mixed models for non-Gaussian longitudinal data is often based on maximum likelihood theory, which assumes that the underlying probability model is correctly specified. It is known that the results obtained from these models are not always robust against misspecification of the random-effects structure. Therefore, diagnostic tools for the detection of this misspecification are of the utmost importance. Three diagnostic tests, based on the eigenvalues of the variance-covariance matrices for the fixed-effects parameters estimates, are proposed in the present work. The power and type I error rate of these tests are studied via simulations. A very acceptable performance was observed in many cases, especially for those misspecifications that can have a big impact on the maximum likelihood estimators.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00154-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:9:p:4474-4486
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().