Favorability functions based on kernel density estimation for logistic models: A case study
Ana Colubi,
González-Rodriguez, Gil,
Dominguez-Cuesta, Maria José and
Montserrat Jiménez-Sánchez
Computational Statistics & Data Analysis, 2008, vol. 52, issue 9, 4533-4543
Abstract:
Susceptibility or hazard models are often established by means of logistic regression techniques in order to describe the effect of a group of explanatory variables on the probability of a dichotomous or binary response. Since the available variables do not always meet the assumptions of logit-linearity of the logistic regression, a modified approach is proposed. Firstly a favorability function associated with each explanatory variable based on the conditional probability measures is introduced. Next, a simple transformation based on the empirical probability function for non-continuous variables is suggested, while nonparametric kernel estimation is considered for continuous ones. The favorability-based transformations lead to new explanatory variables for the logistic regression model. The performance of the method is evaluated using simulated data. In addition, a real case-study is presented, in which a GIS-based landslides susceptibility model is carried out.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00174-6
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:9:p:4533-4543
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().