Mixture periodic autoregressive conditional heteroskedastic models
M. Bentarzi and
F. Hamdi
Computational Statistics & Data Analysis, 2008, vol. 53, issue 1, 1-16
Abstract:
Mixture Periodically Correlated Autoregressive Conditionally Heteroskedastic (MPARCH) model, which extends the ARCH model, is proposed. The primary motivation behind this extension is to make the model consistent with high kurtosis, outliers and extreme events, and at the same time, able to capture the periodicity feature exhibited by the autocovariance structure. The second and the fourth moment periodically stationary conditions and their closed-forms are derived. Maximum likelihood estimation is obtained via the iterative Expectation Maximization algorithm and the performance of this algorithm is shown via a simulation studies and the MPARCH models are fitted to a real data set.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00323-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2008:i:1:p:1-16
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().