Economics at your fingertips  

Spectral estimation of a structural thin-plate smoothing model

Javier Fernandez-Macho

Computational Statistics & Data Analysis, 2008, vol. 53, issue 1, 189-195

Abstract: A nonstationary structural spatial model that explicitly sets the data to evolve across a rectangular lattice constrained by second-order smoothing restrictions is presented. The model exemplifies the concept of model-based spatial smoothing and, in particular, it provides a rationale for the popular discrete thin-plate smoothing method. It is further shown how to use a frequency-domain approach to estimate the spatial model via maximum likelihood. In essence, the approach allows both dimensions to be treated separately from each other so that the computational burden for the estimation of two-dimensional models is dramatically reduced both in terms of the computing time and the memory required. Besides, this spectral approach allows straightforward construction of analytic derivatives and an expression for the asymptotic variance of the estimated smoothing parameter is derived with which to construct confidence intervals. Some numerical Monte-Carlo evidence and one example illustrate the results given.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Haili He ().

Page updated 2020-09-10
Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:189-195