EconPapers    
Economics at your fingertips  
 

Bayesian mixture of autoregressive models

John W. Lau and Mike K.P. So

Computational Statistics & Data Analysis, 2008, vol. 53, issue 1, 38-60

Abstract: An infinite mixture of autoregressive models is developed. The unknown parameters in the mixture autoregressive model follow a mixture distribution, which is governed by a Dirichlet process prior. One main feature of our approach is the generalization of a finite mixture model by having the number of components unspecified. A Bayesian sampling scheme based on a weighted Chinese restaurant process is proposed to generate partitions of observations. Using the partitions, Bayesian prediction, while accounting for possible model uncertainty, determining the most probable number of mixture components, clustering of time series and outlier detection in time series, can be done. Numerical results from simulated and real data are presented to illustrate the methodology.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00298-3
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2008:i:1:p:38-60

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:38-60