EconPapers    
Economics at your fingertips  
 

Comparison between a measurement error model and a linear model without measurement error

Ignacio Vidal and Pilar Iglesias

Computational Statistics & Data Analysis, 2008, vol. 53, issue 1, 92-102

Abstract: The regression of a response variable on an explanatory variable from observations on , where is a measurement of , is a special case of errors-in-variables model or measurement error model (MEM). In this work we attempt to answer the following question: given the data under a MEM, is it possible to not consider the measurement error on the covariable in order to use a simpler model? To the best of our knowledge, this problem has not been treated in the Bayesian literature. To answer that question, we compute Bayes factors, the deviance information criterion and the posterior mean of the logarithmic discrepancy. We apply these Bayesian model comparison criteria to two real data sets obtaining interesting results. We conclude that, in order to simplify the MEM, model comparison criteria can be useful to compare structural MEM and a random effect model, but we would also need other statistic tools and take into account the final goal of the model.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00327-7
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2008:i:1:p:92-102

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:92-102