An algorithm for robust linear estimation with grouped data
Carlos Rivero and
Teofilo Valdes
Computational Statistics & Data Analysis, 2008, vol. 53, issue 2, 255-271
Abstract:
An algorithm which is valid to estimate the parameters of linear models under several robust conditions is presented. With respect to the robust conditions, firstly, the dependent variables may be either non-grouped or grouped. Secondly, the distribution of the errors may vary within the wide class of the strongly unimodal distributions, either symmetrical or non-symmetrical. Finally, the variance of the errors is unknown. Under these circumstances the algorithm is not only capable of estimating the parameters (slopes and error variance) of the linear model, but also the asymptotic covariance matrix of the linear parameters. This opens the possibility of making inferences in terms of either multiple confidence regions or hypothesis testing.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00334-4
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2008:i:2:p:255-271
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().