EconPapers    
Economics at your fingertips  
 

Boosting additive models using component-wise P-Splines

Matthias Schmid and Torsten Hothorn

Computational Statistics & Data Analysis, 2008, vol. 53, issue 2, 298-311

Abstract: An efficient approximation of L2 Boosting with component-wise smoothing splines is considered. Smoothing spline base-learners are replaced by P-spline base-learners, which yield similar prediction errors but are more advantageous from a computational point of view. A detailed analysis of the effect of various P-spline hyper-parameters on the boosting fit is given. In addition, a new theoretical result on the relationship between the boosting stopping iteration and the step length factor used for shrinking the boosting estimates is derived.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00441-6
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2008:i:2:p:298-311

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:298-311