EconPapers    
Economics at your fingertips  
 

Evaluation of matching noise for imputation techniques based on nonparametric local linear regression estimators

Pier Luigi Conti, Daniela Marella and Mauro Scanu

Computational Statistics & Data Analysis, 2008, vol. 53, issue 2, 354-365

Abstract: A new matching procedure based on imputing missing data by means of a local linear estimator of the underlying population regression function (that is assumed not necessarily linear) is introduced. Such a procedure is compared to other traditional approaches, more precisely hot deck methods as well as methods based on kNN estimators. The relationship between the variables of interest is assumed not necessarily linear. Performance is measured by the matching noise given by the discrepancy between the distribution generating genuine data and the distribution generating imputed values.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00379-4
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2008:i:2:p:354-365

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:354-365