EconPapers    
Economics at your fingertips  
 

Minimum MSE regression estimator with estimated population quantities of auxiliary variables

Mingue Park and HyungJun Cho

Computational Statistics & Data Analysis, 2008, vol. 53, issue 2, 394-404

Abstract: Construction of a regression estimator in which the population means of auxiliary variables are estimated with a larger sample is considered. Using the variances of the estimated population means, and the correlation between auxiliary variables and the variable of interest, a design consistent regression estimator that has minimum model mean squared error under a working model is derived. A limited simulation study shows that the minimum model mean squared error regression estimator performs well compared to the generalized least squares regression estimator, even when the working model is inappropriate.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00390-3
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2008:i:2:p:394-404

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:394-404