Comparing principal stratification and selection models in parametric causal inference with nonignorable missingness
Fabrizia Mealli () and
Barbara Pacini
Computational Statistics & Data Analysis, 2008, vol. 53, issue 2, 507-516
Abstract:
Two approaches for dealing with "endogenous selection" problems when estimating causal effects are considered. They are principal stratification and selection models. The main goal is to highlight similarities and differences between the two approaches, by investigating the different nature of their parametric hypotheses. The principal stratification approach focuses on information contained in specific subgroups of units. The aim is to produce valid inference conditional on such subgroups, without an a priori extension of the results to the whole population. Selection models, on the contrary, aim at estimating parameters that should be valid for the whole population, as if the data come from random sampling. A simulation study is conducted to show their different performances, with data generating processes coming from either approach. It is also argued that principal stratification is able to suggest alternative identification strategies not always easily translatable into assumptions of a selection model.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00437-4
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2008:i:2:p:507-516
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().