EconPapers    
Economics at your fingertips  
 

Confidence intervals for a common mean with missing data with applications in an AIDS study

Hua Liang, Haiyan Su and Guohua Zou

Computational Statistics & Data Analysis, 2008, vol. 53, issue 2, 546-553

Abstract: In practical data analysis, nonresponse phenomenon frequently occurs. In this paper, we propose an empirical likelihood based confidence interval for a common mean by combining the imputed data, assuming that data are missing completely at random. Simulation studies show that such confidence intervals perform well, even when the missing proportion is high. Our method is applied to an analysis of a real data set from an AIDS clinic trial study.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00455-6
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2008:i:2:p:546-553

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:546-553