EconPapers    
Economics at your fingertips  
 

Robust probabilistic PCA with missing data and contribution analysis for outlier detection

Tao Chen, Elaine Martin and Gary Montague

Computational Statistics & Data Analysis, 2009, vol. 53, issue 10, 3706-3716

Abstract: Principal component analysis (PCA) is a widely adopted multivariate data analysis technique, with interpretation being established on the basis of both classical linear projection and a probability model (i.e. probabilistic PCA (PPCA)). Recently robust PPCA models, by using the multivariate t-distribution, have been proposed to consider the situation where there may be outliers within the data set. This paper presents an overview of the robust PPCA technique, and further discusses the issue of missing data. An expectation-maximization (EM) algorithm is presented for the maximum likelihood estimation of the model parameters in the presence of missing data. When applying robust PPCA for outlier detection, a contribution analysis method is proposed to identify which variables contribute the most to the occurrence of outliers, providing valuable information regarding the source of outlying data. The proposed technique is demonstrated on numerical examples, and the application to outlier detection and diagnosis in an industrial fermentation process.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00124-8
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:10:p:3706-3716

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:10:p:3706-3716