EconPapers    
Economics at your fingertips  
 

A Bayesian regression model for multivariate functional data

Ori Rosen and Wesley K. Thompson

Computational Statistics & Data Analysis, 2009, vol. 53, issue 11, 3773-3786

Abstract: In this paper we present a model for the analysis of multivariate functional data with unequally spaced observation times that may differ among subjects. Our method is formulated as a Bayesian mixed-effects model in which the fixed part corresponds to the mean functions, and the random part corresponds to individual deviations from these mean functions. Covariates can be incorporated into both the fixed and the random effects. The random error term of the model is assumed to follow a multivariate Ornstein-Uhlenbeck process. For each of the response variables, both the mean and the subject-specific deviations are estimated via low-rank cubic splines using radial basis functions. Inference is performed via Markov chain Monte Carlo methods.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00135-2
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:11:p:3773-3786

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3773-3786