Spatial prediction of ozone concentration profiles
Chivalai Temiyasathit,
Seoung Bum Kim and
Sun-Kyoung Park
Computational Statistics & Data Analysis, 2009, vol. 53, issue 11, 3892-3906
Abstract:
Ground level ozone is one of the major air pollutants in many urban areas. Ozone formation affects ecosystems and is known to be associated with many adverse health issues in humans. Effective modeling of ozone is a necessary step to develop a system to warn residents of high ozone levels. In the present study we propose a statistical procedure that uses multiscale and functional data analysis to improve the spatial prediction of ozone concentration profiles in the Dallas Fort Worth (DFW) area of Texas. This study uses daily eight-hour ozone concentrations and meteorological predictors during a period between 2003 and 2006 at 14 monitoring sites in the DFW area. Wavelet transformation was used as a means of multiscale data analysis, followed by functional modeling to reduce model complexity. Kriging was then used for spatial prediction. The experimental results with real data demonstrated that the proposed procedures achieved acceptable accuracy of spatial prediction.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00134-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:11:p:3892-3906
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().