A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data
Arnost Komárek
Computational Statistics & Data Analysis, 2009, vol. 53, issue 12, 3932-3947
Abstract:
An R package mixAK is introduced which implements routines for a semiparametric density estimation through normal mixtures using the Markov chain Monte Carlo (MCMC) methodology. Besides producing the MCMC output, the package computes posterior summary statistics for important characteristics of the fitted distribution or computes and visualizes the posterior predictive density. For the estimated models, penalized expected deviance (PED) and deviance information criterion (DIC) is directly computed which allows for a selection of mixture components. Additionally, multivariate right-, left- and interval-censored observations are allowed. For univariate problems, the reversible jump MCMC algorithm has been implemented and can be used for a joint estimation of the mixture parameters and the number of mixture components. The core MCMC routines have been implemented in C++ and linked to R to ensure a reasonable computational speed. We briefly review the implemented algorithms and illustrate the use of the package on three real examples of different complexity.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00193-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:12:p:3932-3947
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().