EconPapers    
Economics at your fingertips  
 

Longitudinal data analysis using sufficient dimension reduction method

Lexin Li and Xiangrong Yin

Computational Statistics & Data Analysis, 2009, vol. 53, issue 12, 4106-4115

Abstract: There have been an increasing number of applications where the number of predictors is large, meanwhile data are repeatedly measured at a sequence of time points. In this article we investigate how dimension reduction method can be employed for analyzing such high-dimensional longitudinal data. Predictor dimension can be effectively reduced while full regression means information can be retained during dimension reduction. Simultaneous variable selection along with dimension reduction is studied, and graphical diagnosis and model fitting after dimension reduction are investigated. The method is flexible enough to encompass a variety of commonly used longitudinal models.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00167-4
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:12:p:4106-4115

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4106-4115