EconPapers    
Economics at your fingertips  
 

Efficient Bayesian estimation of multivariate state space models

Chris M. Strickland, Ian. W. Turner, Robert Denham and Kerrie L. Mengersen

Computational Statistics & Data Analysis, 2009, vol. 53, issue 12, 4116-4125

Abstract: A Bayesian Markov chain Monte Carlo methodology is developed for the estimation of multivariate linear Gaussian state space models. In particular, an efficient simulation smoothing algorithm is proposed that makes use of the univariate representation of the state space model. Substantial gains over existing algorithms in computational efficiency are achieved using the new simulation smoother for the analysis of high dimensional multivariate time series. The methodology is used to analyse a multivariate time series dataset of the Normalised Difference Vegetation Index (NDVI), which is a proxy for the level of live vegetation, for a particular grazing property located in Queensland, Australia.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00169-8
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:12:p:4116-4125

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4116-4125