EconPapers    
Economics at your fingertips  
 

Objective parametric model selection procedures from a Bayesian nonparametric perspective

Eduardo Gutiérrez-Peña, Raúl Rueda and Alberto Contreras-Cristán

Computational Statistics & Data Analysis, 2009, vol. 53, issue 12, 4255-4265

Abstract: In this paper we propose objective Bayes procedures for model selection. To this end, we follow Gutiérrez-Peña and Walker [Gutiérrez-Peña, E., Walker, S.G., 2005. Statistical decision problems and Bayesian nonparametric methods. International Statistical Review 73, 309-330], who view traditional parametric procedures as statistical decision problems where the uncertainty on the unknown model generating the observations is modelled nonparametrically. In contrast with some of the competing methods, our proposals are not affected by the lack of propriety of the prior distribution. We compare the proposed procedures with other objective methods through a simple yet challenging example. Finally, we present a simulation study and introduce a 'mosaic plot' which is useful to summarise the output of our simulations.

Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00203-5
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:12:p:4255-4265

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4255-4265