Bootstrap estimated true and false positive rates and ROC curve
Werner Adler and
Berthold Lausen
Computational Statistics & Data Analysis, 2009, vol. 53, issue 3, 718-729
Abstract:
Diagnostic studies and new biomarkers are assessed by the estimated true and false positive rates of the classification rule. One diagnostic rule is considered for high-dimensional predictor data. Cross-validation and the leave-one-out bootstrap are discussed to estimate true and false positive rates of classifiers by the machine learning methods Adaboost, Bagging, Random Forest, (penalized) logistic regression and support vector machines. The .632+ bootstrap estimation of the misclassification error has been previously proposed to adjust the overfitting of the apparent error. This idea is generalized to the estimation of true and false positive rates. Tree-based simulation models with 8 and 50 binary non-informative variables are analysed to examine the properties of the estimators. Finally, a bootstrap estimation of receiver operating characteristic (ROC) curves is suggested and a .632+ bootstrap estimation of ROC curves is discussed. This approach is applied to high-dimensional gene expression data of leukemia and predictors of image data for glaucoma diagnosis.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00460-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:3:p:718-729
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().