Nonparametric analysis of clustered data in diagnostic trials: Estimation problems in small sample sizes
Frank Konietschke and
Edgar Brunner
Computational Statistics & Data Analysis, 2009, vol. 53, issue 3, 730-741
Abstract:
In diagnostic trials, clustered data are obtained when several subunits (e.g., organs or vessels) of the same patient are observed where no, several, or all subunits may be diseased or non-diseased as classified by a gold standard. In such a design, repeated measures appear in a natural way since the same patient is observed under different conditions by several readers and the repeated measures may have a quite involved correlation structure. A nonparametric method for clustered data in multiple reader studies to estimate the area under the ROC curve has been previously considered. The disadvantage of this procedure is that the test statistic (a quadratic form) can become negative in case of small samples. Therefore, a slightly different approach by weighting the estimators of the areas under the curves (AUC) is proposed. It is shown that the proposed new estimator of the covariance matrix of the weighted AUC estimators is always positive semidefinite. Simulation studies show that the new statistic maintains the pre-assigned type-I error level quite well even in case of small sample sizes. The method is motivated by a real data example where the previously suggested statistic becomes negative. This example demonstrates the advantage of the new method.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00399-X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:3:p:730-741
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().