EconPapers    
Economics at your fingertips  
 

Internal validation inferences of significant genomic features in genome-wide screening

Cheng Cheng

Computational Statistics & Data Analysis, 2009, vol. 53, issue 3, 788-800

Abstract: Although validation of classification and prediction models has been a long-standing topic in Statistics and computer learning, the concept of statistical validation in genome-wide screening studies has been vague. Internal validation generally refers to validation procedures solely based on the study dataset. A popular approach to internal validation of identified genomic features has been the split-dataset validation. Contrast to this approach, internal validation in genome-wide association screening studies is precisely defined through the concepts of association profile and profile significance. A general procedure and two specific profile significance measures are developed and are compared with the split-dataset validation approach by a simulation study. The simulation results clearly demonstrate the strength and limitations of the profile significance approach to internal validation, especially its enormous gain in sensitivity (power) and stability over the split-dataset validation. The proposed methodology is illustrated by an example of genome-wide SNP association analysis in genetic epidemiology.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00340-X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:3:p:788-800

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:3:p:788-800