Pairwise likelihood for the longitudinal mixed Rasch model
M.-L. Feddag and
Silvia Bacci ()
Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 1027-1037
Abstract:
Inference in Generalized linear mixed models with multivariate random effects is often made cumbersome by the high-dimensional intractable integrals involved in the marginal likelihood. An inferential methodology based on the marginal pairwise likelihood approach is proposed. This method belonging to the broad class of composite likelihood involves marginal pairs probabilities of the responses which has analytical expression for the probit version of the model, from where we derived those of the logit version. The different results are illustrated with a simulation study and with an analysis of a real data from health-related quality of life.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00430-1
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:1027-1037
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().