EconPapers    
Economics at your fingertips  
 

Approximate cost-efficient sequential designs for binary response models with application to switching measurements

Juha Karvanen

Computational Statistics & Data Analysis, 2009, vol. 53, issue 4, 1167-1176

Abstract: The efficiency of an experimental design is ultimately measured in terms of time and resources needed for the experiment. Optimal sequential (multi-stage) design is studied in the situation where each stage involves a fixed cost. The problem is motivated by switching measurements on superconducting Josephson junctions. In this quantum mechanical experiment, the sequences of current pulses are applied to the Josephson junction sample and a binary response indicating the presence or the absence of a voltage response is measured. The binary response can be modeled by a generalized linear model with the complementary log-log link function. The other models considered are the logit model and the probit model. For these three models, the approximately optimal sample size for the next stage as a function of the current Fisher information and the stage cost is determined. The cost-efficiency of the proposed design is demonstrated in simulations based on real data from switching measurements. The results can be directly applied to switching measurements and they may lead to substantial savings in the time needed for the experiment.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00487-8
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:53:y:2009:i:4:p:1167-1176

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1167-1176